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Abstract. A classical construction of stream ciphers is to combine several LFSRs and a
highly non-linear Boolean function f . Their security is usually studied in terms of corre-
lation attacks, that can be seen as solving a system of multivariate linear equations, true
with some probability. At ICISC’02 this approach is extended to systems of higher-degree
multivariate equations, and gives an attack in 292 for Toyocrypt, a Cryptrec submission.
In this attack the key is found by solving an overdefined system of algebraic equations. In
this paper we show how to substantially lower the degree of these equations by multiplying
them by well-chosen multivariate polynomials. Thus we are able to break Toyocrypt in 249

CPU clocks, with only 20 Kbytes of keystream, the fastest attack proposed so far. We also
successfully attack the Nessie submission LILI-128, within 257 CPU clocks (not the fastest
attack known). In general, we show that if the Boolean function uses only a small subset
(e.g. 10) of state/LFSR bits, the cipher can be broken, whatever is the Boolean function
used (worst case). Our new general algebraic attack breaks stream ciphers satisfying all
the previously known design criteria in at most the square root of the complexity of the
previously known generic attack.
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1 Introduction
In this paper we study stream ciphers with linear feedback. In such ciphers there is a
linear part, producing a sequence with a large period, usually composed of one or several
LFSRs, and a nonlinear combiner that produces the output, given the state of the linear
part. The security of such stream ciphers received much attention. In [14], Golic gives a
set of criteria that should be satisfied in order to resist to the known attacks on stream
ciphers. For example, a stream cipher should resist to the fast correlation attack [16],
the conditional correlation attack [1] and the inversion attack [14]. In order to resist
different types of correlation attacks, many authors focused on proposing Boolean func-
tions that will have no good linear approximation and that will be correlation immune
with regard to a subset of several input bits, see for example [6]. Recently the scope of
application of the correlation attacks have been extended. In [11], the author exploits
rather correlation properties with regard to a non-linear low degree multivariate function
that uses all of the variables, or in other words, non-linear low degree approximations.
This kind of correlations is not new, see for example in [15]. However their application
to cryptographic attacks did not receive sufficient attention, probably because only re-
cently people became aware of the existence of efficient algorithms for solving systems
of nonlinear multivariate equations of low degree [25, 9–11].
Following [11], stream ciphers with linear feedback are potentially very vulnerable to
such algebraic attacks. If for one state we are able, by some method, to deduce from
the output, a multivariate equation of low degree in the state bits, then it is also of low



2 Courtois Meier, Eurocrypt 2003, extended version, August 24, 2003, c©IACR

degree in the initial state bits. Then the same can (probably) be done for many other
states, and given many keystream bits, we inevitably obtain a very overdefined system
of equations (i.e. many equations). Such systems can be solved efficiently by techniques
such as XL [25, 9], adapted for this purpose in [11] or the simple linearization [25].
In [11], the equations of low degree are obtained by approximating the non-linear compo-
nent f of the cipher by a function of low degree. If the probability that the approximation
holds is close to 1, then it can be used simultaneously for many equations, and we ob-
tain efficient attacks with XL method. For example in [11], an attack in 292 against
Toyocrypt1 is proposed, that requires only some 219 bits of the keystream. With more
keystream, and if at least some 32 bits are consecutive, a better attack is possible, due
to Mihaljevic and Imai [19].
In this paper we show that algebraic attacks on stream ciphers will apply even if there is
no good low degree approximation. We propose a new method of generating low degree
equations, basically by multiplying the initial equations by well-chosen multivariate poly-
nomials. This method allows to cryptanalyse a large class of stream ciphers, satisfying
all the previously known design criteria. For example, all very traditional designs using
only a small subset of the state bits, are shown to be insecure, whatever is the Boolean
function used.
The paper is organized as follows: in Section 2 we give a general view of algebraic attacks
on stream ciphers. The main component of our new attack on stream ciphers is described
in Section 2.4. In Section 3.1 we overview Toyocrypt and previously known attacks, then
in Section 3.2 we apply our new attack for Toyocrypt. In Sections 4 and 5 we will study
LILI-128 and apply our attack. Then in Section 6 we develop our general attack on
stream ciphers using a small subset of state bits. Finally we present our conclusions
about the design of stream ciphers.

2 Algebraic Attacks Against Stream Ciphers

In this part we overview and substantially extend the general strategy initially described
in [11], that reduces an attack on a stream cipher, to solving a system of multivariate
equations.

2.1 The Stream Ciphers that May be Attacked
We consider only synchronous stream ciphers, in which each state is generated from the
previous state independently of the plaintext, see for example [18] for precise definitions.
In principle also, we consider only regularly clocked stream ciphers, and also (it makes
no difference) stream ciphers that are clocked in a known way. However this condition
can sometimes be relaxed, cf. attacks on LILI-128 described in Sections 4-5.
For simplicity we restrict to binary stream ciphers in which the state and keystream are
composed of a sequence of bits and that generate one bit at a time. We also restrict to the
case when the ”connection function” that computes the next state is linear over GF (2).
We call L this ”connection function”, and assume that L is public, and only the state is
secret. We also assume that the function f that computes the output bit from the state
is public and does not depend on the secret key of the cipher. This function f is called ”a
nonlinear filter”. The ciphers described here include the very popular filter generator, in
1 Toyocrypt has been accepted to the second evaluation phase of the Japanese Cryptrec call for primi-

tives, and (apparently) rejected later.
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which the state of a single LFSR2 is transformed by a Boolean function, and also not less
popular nonlinear function generators, in which outputs of several LFSRs are combined
by a Boolean function [18]. There are also many other ciphers that enter this scenario.
The problem of cryptanalysis of such a stream cipher can be described as follows. Let
(k0, . . . , kn−1) be the initial state, then the output of the cipher (i.e. the keystream) is
given by:


b0 = f (k0, . . . , kn−1)
b1 = f (L (k0, . . . , kn−1))
b2 = f

(
L2(k0, . . . , kn−1)

)
...Our problem is to recover the key k = (k0, . . . , kn−1) from some subset of keystream bits

bi.
2.2 The Attack Scenario
We are going to perform a partially known plaintext attack, i.e. we know some bits of the
plaintext, and the corresponding ciphertext bits. The bits don’t need to be consecutive.
For example if the plaintext is written in the Latin alphabet, and does not use too many
special characters, it is very likely that all the characters have their most significant bit
equal to 0. This will be enough for us, if the text is sufficiently long. This would be
(almost) a ciphertext-only attack.
In our attacks we just assume that we have some m bits of the keystream bi at some
known positions3.
2.3 The Summary of the Attack
For easier reading we give here a brief summary of the attack developed later. At the
time t, the current keystream bit gives an equation f(s) = bt with s being the current
state. The main new idea consists of multiplying f(s), that is usually of high degree, by
a well chosen multivariate polynomial g(s), such that fg is of substantially lower degree,
denoted by d. Then, for example if bt = 0, we get an equation of low degree f(s)g(s) = 0.
This in turn, gives a multivariate equation of low degree d on the initial state bits ki. If
we get one such equation for each of sufficiently many keystream bits, we obtain a very
overdefined system of multivariate equations that can be solved efficiently.
In the following Section 2.4 we describe in more details known and new methods to
obtain overdefined systems of equations from a stream cipher and explain how to solve
them.
2.4 Design Criteria on f and Known Attacks
Let f be the Boolean function 4 that is used to combine the outputs of the linear part
of the cipher. For example the inputs to the function are some bits of the state of some
LFSRs. The usual requirements on such functions can be summarised as follows. First,
f should be balanced and have high algebraic degree. To prevent correlation attacks, f
should be highly non-linear5, and correlation immune at high order, see [6].
2 A Linear Feedback Shift Register, see e.g. [18]. It is also possible to use a MLFSR, equivalent in theory

[19] but having faster diffusion, as used in Toyocrypt cipher that we study later.
3 For unknown positions, it would give no information whatsoever.
4 In this paper we study mainly attacks on ciphers using one single Boolean function f , i.e. with an

output in GF (q) with q = 2. It is straightforward to extend them to the case when q > 2 or with an
output in some ring. It is also straightforward to extend them to the case of several different filtering
functions combined in parallel.

5 But maybe not a perfectly non-linear (bent) function, see Section 4 in [11].
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2.5 Criteria on f in the Recent Algebraic Attack on Stream Ciphers

An additional criterion on f is given in [11]: f should also not have a very good correlation
with respect to low-degree non-linear multivariate functions, otherwise efficient attacks
are possible, for example for Toyocrypt [11]. They are possible when:

S1 either the Boolean function f has a low algebraic degree D (classical criterion),
S2 or f can be approximated by such a function with a probability close to 1 (new

criterion [11]). This probability is usually denoted 1− ε for some small ε.

The practical attacks on Toyocrypt presented in [11] use the second case S2. In this paper
we use equations true with probability 1 (as in the first case) except that we relax the
degree condition: it is no longer necessary that f has a low algebraic degree d:

2.6 New Assumptions on f and New Attack Scenarios

S3 The multivariate polynomial f has some multiple fg of low degree d, with g being
some non-zero multivariate polynomial.

S4 It is also possible to imagine attacks in which f has some multiple fg, such that fg
can be approximated by a function of low degree with some probability (1− ε).

How to Use Low Degree Multiples

Our goal is to obtain an overdefined system of low degree equations. In scenarios S1
and S2, for each known keystream bit at position t: bt, we obtain a concrete value of
bt = f(s), and thus we get the equation bt = f

(
Lt(k0, . . . , kn−1)

)
. For this, f has to be

of low degree. In scenarios S3 and S4, for each known keystream bit bt = f(s) at position
t, we get:

f(s) · g(s) = bt · g(s),

and, since the state is at time t is s = Lt(k0, . . . , kn−1), it boils down to:
f
(
Lt(k0, . . . , kn−1)

)
· g
(
Lt(k0, . . . , kn−1)

)
= bt · g

(
Lt(k0, . . . , kn−1)

)
.

This is the equation we are going to use in our attack(s). We get one multivariate equation
for each keystream bit. This equation may be of very low degree, without f being of low
degree, and without f having an approximation of low degree.
In the basic version of this attack S3, we also require that g is of low degree. There
are other possibilities. In the basic version of the attack S3, that may be called S3a,
we use the equation written above and we require the fg 6= 0 and fg is of low degree,
and also we need g of low degree. There is another variant, in which we may admit
that ∀s f(s)g(s) = 0, and the equation can still be used when bt 6= 0. This is called the
scenario S3b. Another variant, called S3c, allows to relax the degree condition on g: when
bt = 0, we can still use the equation, whatever is the degree of g, provided that fg 6= 0
and is of low degree. All the 3 sub-cases of the S3 attack scenario are summarized in the
following table6:

6 In this table, we see that S2 is obtained from S1 by adding ”true with probability (1−ε)” everywhere.
The same applies to S4 defined with respect to S3.
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Attack scenario

considered

S1 and6 S2

S3a and6 S4a
S3b and6 S4b
S3c and6 S4c

Degree of

f g fg

low g = 1 low

high low, g 6= 0 low, fg 6= 0
high low, g 6= 0 fg = 0
high high low, fg 6= 0

Use the

equation

f(s) = bt

f(s) · g(s) = bt · g(s)
g(s) = 0

f(s) · g(s) = 0

Only

when

always

always
bt 6= 0
bt = 0

Number of equations

for m keystream bits

m

m
m/2
m/2

Table 1. Different methods to obtain low degree equations from keystream bits

The important question is now, given a cipher, whether such polynomials g exist, and
how to find them. For this, see Section 5 and 6.
Remark 1: It can be seen that the scenarios S1 (respectively S2) are a special case of
the scenarios S3 (respectively S4). Indeed, if we put g = 1, the equation used in scenarios
S3/S4 becomes the usual equation f(s) = bt of the previous scenarios S1/S2.
Example: In the scenario S3b, if g is a non-zero polynomial of low degree d ∈ IN such
that fg = 0, then we will obtain one equation g(s) = 0 of the same degree D for each
of the keystream bits for which bt = 0, i.e. given m keystream bits, we will obtain on
average m/2 multivariate equations of degree D.
Remark 2: The equations obtained for each keystream bit bt, from the 3 scenarios S3a-c
may overlap: i.e. become linearly dependent. For this reason we will rather use only the
equations produced by one of these scenarios, full version except for the scenarios S3b
and S3c can be combined safely: only one of them is used, for each keystream bit bt,
depending whether bt = 0 or 1.

2.7 Solving Overdefined Systems of Multivariate Equations
In our attack, given m keystream bits, let R be the number of multivariate equations of
degree d, and with n variables ki, that we obtain. With one equation, and in scenario
S3a, we have R = m, but we may also combine several scenarios and several different g
for the same f , and get, for example R = 14 ·m. We solve them as follows.
Linearization Method: There are about T ≈

(n
d

)
monomials of degree ≤ d in the n

variables ki (assuming d ≤ n/2). We consider each of these monomials as a new variable
Vj . Given R ≥

(n
d

)
equations, we get a system of R ≥ T linear equations with T =

(n
d

)
variables Vi that can be easily solved by Gaussian elimination on a linear system of size
T .
XL Method: When as many as the required m = O(

(n
d

)
) keystream bits, are not

available, it is still possible to use XL algorithm or Gröbner bases algorithms to solve
the system, with less keystream bits, but with more computations, see [11] or Appendix
D.1.

2.8 About the Complexity of Gaussian Reduction

Let ω be the exponent of the Gaussian reduction. , i.e. a linear system with T variables can
be solved in time Tω. In theory it is at most ω ≤ 2.376, see [7]. However the (neglected)
constant factor in this algorithm is unknown to the authors of [7], and is expected to be
very big. The fastest practical algorithm we are aware of, is Strassen’s algorithm [30] that
requires about 7 ·T log27 operations. Since our basic operations are over GF (2), we expect
that a careful bitslice implementation of this algorithm on a modern CPU can handle 64
such operations in one single CPU clock. To summarize, in this paper we assume that
the Gaussian reduction takes 7 · T log27/64 CPU clocks.
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3 Cryptanalysis of Toyocrypt

3.1 Toyocrypt and Recent Algebraic Attacks
We look at the stream cipher called Toyocrypt, a submission to the Japanese government
Cryptrec call for cryptographic primitives. It was, at the time of the design, believed to
resist to all known attacks on stream ciphers. In Toyocrypt, we have one 128-bit LFSR,
and thus n = 128. The Boolean function is of the form:

f(s0, .., s127) = s127 +
62∑
i=0

sisαi + s10s23s32s42 +

+s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +
62∏
i=0

si.

with {α0, . . . , α62} being some permutation of the set {63, . . . , 125}. This system is quite
vulnerable to an attack using low-order approximations: there is only one monomial of
degree 17, and one of degree 63. The higher-order monomials are almost always zero.

The Recent Higher Order Correlation Attack on Toyocrypt

This attack is described in [11] an attack following the scenario S2 is described. In
this attack, f is approximated by a multivariate function of degree 4 with probability
1 − 2−17. The attack runs in 292 CPU clocks. requires 265 bits of memory, and and has
very loose requirements on the keystream needed: only 51 kilobytes, that does not have
to be consecutive. For more details see [11]. In this paper we present a much faster attack
on Toyocrypt.

3.2 Our New Algebraic Attack on Toyocrypt
In our attack we need to find g such that fg is of low degree (or is such with high
probability), following the assumption S3 (or S4) from Section 2.4. How do we find a
function g such that fg is of low degree ? One method we present in this paper, is
by factoring multivariate polynomials. We consider the terms of high degree in f(s)
(regardless the lower degree terms) and look if they are divisible by a common low
degree factor g′(s). Then (for polynomials over GF (2)) we observe that f(s) · g(s) with
g(s) = g′(s)− 1 is of low degree.
Remark: Compared to the previous algebraic attacks on Toyocrypt from [11], that work
for any field GF (q), this approach seems to work well only for ciphers defined over GF (2).
Later in Sections 5 and 6, we will describe a different method to find polynomials g
satisfying our requirements.
In the case of Toyocrypt, we observe that the combination of the parts of degree 4, 17
and 63, is divisible by a common factor s23s42. For each clock t, s23 and s42 are different
known linear combinations of the ki. For each clock t and the corresponding keystream bit
bt, we start from the equation f(s) = bt, and multiply both sides of it by g(s) = (s23−1).
Then we get f(s)s23−f(s) = bt(s23−1). The monomials divisible by s23 in f will cancel
out, and what remains is an equation of degree 3 true with probability 1. We repeat the
same trick for s42, i.e. we put g(s) = (s42 − 1). From this, we have a simple linearization
attack following the scenario S3a. For each keystream bit, we obtain 2 equations of degree
3 in the si, and thus 2 equations of degree 3 in the ki. The linearization will work as
soon as R > T , and we have T ≈

(128
3

)
= 218.4 monomials. We have R = 2m, and having

m = T/2 = 217.4 keystream bits will be sufficient. Our new attack on Toyocrypt is in
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7/64 · T log27 = 249 CPU clocks, requires 16 Gigabytes of memory and only about 20
kilobytes of (non-consecutive) keystream.
We programmed this attack to see if it works. Our simulations show that the number of
linearly dependent equations is negligible and therefore the attack will be able to recover
the key. Details are given in the Appendix A.

Comparison with Other Attacks
This attack is much better than the general purpose time/memory/data tradeoff attack
described by Shamir and Biryukov in [24], that given the same number of keystream
bits, about 217, will require about 2111 computations (in precomputation phase). Our
attack is also always better than the Mihaljevic and Imai attack from [19]. For example
in [19], given much more data, for example 248 bits, and in particular at least some
32 consecutive bits of the keystream, and given much more memory 264, the key can
be recovered with a precomputation of 280 and processing time in 232. Moreover if the
keystream does not contain 32 consecutive bits, only our attack will work. Similarly, if
the keystream available is limited to 217, both the attack from [19] and [24] will require
a precomputation of about 2111.

4 Background on LILI-128 and Simple Attacks

In principle our algebraic attacks are designed only for regularly clocked stream ci-
phers (or ciphers clocked in a known way). However in some cases, this difficulty can
be removed. This is the case for LILI-128, a submission to Nessie European call for
cryptographic primitives.

4.1 Eliminating the First Component
LILI-128 is a stream cipher composed of two LFSR-based filter generators, the first being
used to clock the second. There are two basic strategies to by-pass this.
A. Since the key length of the first component is only 39 bits, we may guess these 39 bits
and attack the second component alone. In LILI-128, the first component advances the
clock of the second component by 1, 2, 3 or 4. Given the state of the first component, we
have access to some number of non-consecutive keystream bits of the second component,
at known positions. This is sufficient for our attacks, and the complexity of the attack
is multiplied by 239.
B. Given more keystream bits, it is possible to avoid repeating the whole attack 239

times. For this, we use the Lemma 1 from [28]: after clocking the first LFSR of LILI-128
239 − 1 times, the second LFSR advances exactly ∆d = 5 · 238 − 1 times. Thus, we may,
instead of guessing the state of the clock control subsystem, clock it 239 − 1 at a time,
and apply any of the XL attacks exactly as if the first generator did not exist.
In both cases, the bits the attacker has access to, are in some known places of the
keystream of the second component (but not in chosen places). It is perfectly sufficient
to apply directly, to the second component, all the algebraic attacks S1-S4 described in
Section 2.4: 2.2-2.7, From the point of view of all our attacks, that write one equation for
each keystream bit, the second component is attacked exactly as if it was a stand-alone
filter generator: we will have access to some keystream bits at some known positions.
This will give a system of equations we will solve.
Intermediate Solutions A-B. The period of the first component of LILI-128 is not
a prime, and we have 239 − 1 = 7 · 79 · 121369 · 8191. This suggests that one should be
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able to design a decimation attack, in which by clocking the generator t clocks at a time,
for a suitable t, one could simulate a smaller LFSR, see [13] for more details. It could
give a version of our later attacks, intermediate between A and B, in which both the
keystream requirements and the attack complexity would be multiplied by some factor,
but both factors should be smaller than 239. One should refer to [13] for more details on
decimation.

The Boolean Function Used in LILI-128
We call f the output filtering function of LILI-128 (called fd in [26]). It is a highly non-
linear Boolean function of degree 6, with 10 variables, built following the paper [22]. It
uses a subset of 10 variables:

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
def
= (s0, s1, s3, s7, s12, s20, s30, s44, s65, s80) .

We computed the algebraic normal form (ANF) of this LILI-128 function f . It gives:
f(x1, .., x10) =

x2 + x3 + x4 + x5 + x6x7 + x1x8 + x2x8 + x1x9 + x3x9 + x4x10 + x6x10 +

x3x7x9 + x4x7x9 + x6x7x9 + x3x8x9 + x6x8x9 + x4x7x10 + x5x7x10 +

x6x7x10 + x3x8x10 + x4x8x10 + x2x9x10 + x3x9x10 + x4x9x10 + x5x9x10 +

x3x7x8x10 + x5x7x8x10 + x2x7x9x10 + x4x7x9x10 + x6x7x9x10 + x1x8x9x10 + x3x8x9x10 +

x4x8x9x10 + x6x8x9x10 + x4x6x7x9 + x5x6x7x9 + x2x7x8x9 + x4x7x8x9 +

x4x6x7x9x10 + x5x6x7x9x10 + x3x7x8x9x10 + x4x7x8x9x10 + x4x6x7x8x9 + x5x6x7x8x9 +

x4x6x7x8x9x10 + x5x6x7x8x9x10

4.2 First Attacks on LILI-128 (Scenarios S1 and S2)

First, it is possible to apply to LILI-128 our scenario S1. We have d = 6, ε = 0 and
R = m. Then T ≈

(89
6

)
≈ 229.2 monomials, and in order to have R > T we will need

m ≈ 229.2. It gives an attack in7 about:
239 · 7/64 · T log2 7 ≈ 2118 < 2128.

Remark: This is in fact a degenerated version of the XL attack with D = d, (known
also as linearization [25]), and if ε = 0, there is no use take in XL a bigger D than
the minimum D = d = 6. However, as always, if there is not enough keystream bits to
perform this attack, XL may be used, see [11] and Appendix D of this paper.
Given the Boolean function used, it is not useful to extend the attack to the scenario
S2: there is no good approximation of degree d < 6, as it would gives ε > 2−6 which
is by far too big: with LILI-128, an approximation of degree 5 holds only for about 26

keystream bits. There is no real possibility to get an overdefined system of equations, for
example the probability to obtain a system of 128 equations of degree 5 that are correct
is (1 − 2−6)128 ≈ 0.13, and to obtain m = 212 equations it is about 2−93. We cannot
hope to obtain an overdefined system: for systems of degree 5, we need m of order of(128

5

)
≈ 228.

However we may improve the attack following the method B from Section 4.1. Clocking
the first LFSR of LILI-128 239−1 times advances the first LFSR exactly 5 ·238−1 times,
exactly as if the first generator did not exist. Thus instead of guessing the state of the
7 This simple attack has already been described by Steve Babbage in [4].
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clock control subsystem we clock it 239 − 1 at a time and apply the simple linearization
S1-type attack with D = 6 and ε = 0. Now the complexity is only 7

64T log2 7 ≈ 279 but
this version requires much more keystream bits: 268 instead of 229 bits.

5 Better Attacks on LILI-128

First we try to apply to LILI-128 the idea of factoring multivariate polynomials from
Section 3.2. For this, we consider the part of degree 5 and 6 of f . We used Maple function
factor() to factor this multivariate polynomial. It gives:

x7x9 (x3x8x10+x4x6x8+x4x6x10+x4x8x10+x5x6x8+x5x6x10+x4x6x8x10+x5x6x8x10)

It means that when we multiply f by either (x7 + 1) or (x9 + 1), the degree collapses
from 6 + 1 = 7 to 4 + 1 = 5. We consider then the factoring of the part of degree 5 and
4 of respectively f(x) · (x7 + 1) and f(x) · (x9 + 1). Only the second function can still be
factored and it gives:

x10 (x3x7x8x9+x5x7x8x9+x3x7x8+x3x8x9+x4x7x9+x4x8x9+x5x7x8+x5x7x9+x6x7x9)

From this we deduce the remarkable fact that f(x)(x9+1)(x10+1) is of degree 4, instead
of 8. We have done computer simulations to see if more low degree multiples of f exist.

5.1 Finding More Low Degree Multiples of f for LILI-128

We are trying to mount an attack following the scenario S3a or S3c, i.e. we are looking for
the number of linearly independent polynomials g, such that fg is of low degree. In order
to find them, we are looking for linear dependencies in the following set of multivariate
polynomials (stopped at maximum degree for g and some maximum degree for fg).

{f(x), f(x) · x1, f(x) · x2, . . . , f(x) · x1x2, . . . ; 1, x1, x2, . . . , x1x2, . . .}

We do not count polynomials g for which fg is a polynomial of low degree equal to 0.
Results on such equations, corresponding rather to the scenario S3b, are given later in
Section 5.2. We note that the maximum degrees cannot be higher than 10, as there are
only 10 variables. Here are our results with fg 6= 0, (a.k.a. Scenario S3a) compared to a
random Boolean function of the same size:

The function
Degree of g
Degree of fg

Nb. of g

LILI-128 fd

10 1 2 3 4 10
3 4 4 4 4 4

0 0 4 8 14 14

Random Boolean

10 1 2 3 4 10
3 4 4 4 4 4

0 0 0 0 0 0

Table 2. Simulations on the number of linearly independent g such that fg is of low degree

We have computed and tested all these solutions. For example, one can verify that:

f(x) · x8x10 = x8x10 (x2x9 + x3x7 + x4x7 + x5x9 + x1 + x4 + x5 + x6) .

We see that the function f of LILI-128, behaves much worse than a random Boolean func-
tion. This shows that the design of LILI-128 is far from being optimal against algebraic
attacks.
Remark on Scenario S3c vs. S3a: From our simulations we see that there is no more
g of degree 10 with fg of degree 4, than when g are of degree ≤ 4. For this, particular
function f , and for d = 4, the scenario S3c cannot be used.
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5.2 Finding Multiples fg = 0 with Low Degree of g (scenario S3b)

We may also try to mount an attack following the scenario S3b, i.e. we are looking for
the number of linearly independent polynomials g of low degree, such that fg = 0.
We are interested in the total number of such g that are linearly independent. Here
are the results of our simulations: Our simulations show that surprisingly many such
orthogonal factors exist. In the following table we compare the number of such linearly
independent g found for f used in LILI-128, compared to a random Boolean function
GF (2)10 → GF (2).

The function
Given max. degree

Nb. of g

LILI-128 fd

1 2 3 4 5 6

0 0 0 14 149 350

Random Boolean

1 2 3 4 5 6

0 0 0 0 144 337

Table 3. S3b: Simulations on the number of linearly independent low degree g such that fg = 0

Unfortunately, in the scenario S3b, we did not find any g of degree 3, however we did
find 14 linearly independent g of degree 4. For example, one can verify the following two
examples:

f(x) · x10 (x1x7x8 + x3x7x8 + x5x7x8 + x2x7x9 + x3x7x9 + x4x7x9 + x5x7x9+
x6x7x8 + x2x8x9 + x3x8x9 + x1x9 + x3x9 + x4x9 + x6x9 + x7x8 + x9) = 0
f(x) · x8x10 (x2x9 + x3x7 + x4x7 + x5x9 + x1 + x4 + x5 + x6 + 1) = 0

Remark: The several g functions obtained here (scenario S3b) are not necessarily lin-
early independent of those of Section 5.1 (scenario S3a). Indeed, from the definitions of
S3a and S3b we see that a linear combination of g that satisfy S3a can be in S3b. For
this reason, we will not try to combine these two attacks from Sections 5.1 (scenario S3a)
and 5.2 (scenario S3b).
LILI-128 vs. Random Boolean Functions: In comparison to random, the function f
of LILI-128, behaves, again, worse than a random Boolean function. This (again) shows
that the design of LILI-128 is not optimal.
Attacks for Any Boolean Function ?! However, in this (second) attack on LILI-128,
we observe that even for a random Boolean function with 10 variables, there are still
solutions g of degree 5. It can be seen that it is due to a small number of variables (10).
From this, in Section 6 we develop a general attack on stream ciphers, whatever is the
Boolean function used.

Consequences for LILI-128

Following the scenario S3a, and using the results of Section 5.1, given m keystream bits,
we obtain 14 · m multivariate equations of degree 4 in the key bits ki of LILI-128. We
will have to solve an overdefined system of multivariate equations of degree 4, true with
probability 1. This is done by linearization. Following Section 4.1 there are two versions
of the attack.
A In the first version (A) the state of the first generator is guessed and the complexity

is multiplied by 239. For each keystream bit we obtain 14 equations of degree 4
in the ki. For linearization we have T =

(89
4

)
= 221 monomials, and we will need

m = T/14 = 218 keystream bits in order to have R > T . Our best new attack on
LILI-128 requires then 239 · 7 · T log27/64 ≈ 296 CPU clocks. This first attack version
works given access to some m stream bits, being at some known positions.
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B In the second version (B), the first component is clocked 239− 1 clocks at a time (see
Section 4.1) and thus the number of keystream bits is multiplied by 239. We have
the same T =

(89
4

)
= 221.2, and the complexity is now 257 CPU clocks. The attack

requires 762 Gigabytes of memory and 257 bits of consecutive keystream, or, it can
be seen that we only need 218 keystream bits that are on some positions of the form
α + β · (239 − 1), for a fixed α. Once the state at the time α of the second LFSR is
recovered, the state of the first LFSR can be found very quickly within 239 tries and
a few additional keystream bits. The values of β does not have to be consecutive.

Remark: This is not the best attack known for LILI-128. In [28] it is shown that LILI
128 can be broken with 246 bits of keystream, a lookup table of 245 89-bit words and
computational effort which is roughly equivalent to 248 DES operations. Our attack has
however much more general consequences.

6 General Attack on Stream Ciphers Using a Subset of LFSR bits

In this section we show that the case of LILI-128 is not isolated. We will show that all
very traditional stream ciphers, with linear feedback and a highly non-linear (stateless)
filtering function are insecure, for example8 when they use only a small subset of state
bits.
We consider a stream cipher with n state bits, and using only a small subset of k state
bits to derive the keystream bit. Thus we have:

{x1, x2, . . . , xk} ⊂ {s0, s1, . . . , sn−1} .
We assume that k is a small constant and n is the security parameter. For example for
the second component of LILI-128 k = 10, n = 89. A good stream cipher design should
have security that grows exponentially in n, for example as 22n/3, see [24], as long as the
amount m of stream bits available, is not too big.
We would like to mount an attack following the scenario S3a, and for this, we are looking
for the number of linearly independent low-degree polynomials g 6= 0, such that fg is
also of low degree. In order to find them, similarly as in Section 5.1, we check for linear
dependencies in the set of polynomials C = A ∪B defined below as follows.
In this proof we consider multi-sets (i.e. repetitions are allowed). First, we consider all
the possible monomials up to some maximum degree d (this part will later compose fg).

A = {1, x1, x2, . . . , x1x2, . . .}

Then we consider all multiples of f , multiplied by monomials of the degree up to d (this
degree corresponds to the degree of g). Thus we write the following polynomials:

B = {f(x), f(x) · x1, f(x) · x2, . . . , f(x) · x1x2, . . .}

Let C = A ∪ B. All elements of A,B and C, can be seen as multivariate polynomials in
the xi: for this we need to substitute f with its expression in the xi. A set of multivariate
polynomials with k variables cannot have a dimension greater than 2k. If there are more
than 2k elements in our multi-set, linear dependencies will exist. Such combinations allow
to find a function g such that f · g is of substantially lower degree than f . More precisely
we have the following theorem:
8 Though Toyocrypt does not satisfy this assumption, it is still broken by our attack, that will also work

in many other interesting cases, see Section 7.



12 Courtois Meier, Eurocrypt 2003, extended version, August 24, 2003, c©IACR

Theorem 6.0.1 (Low Degree Relations).
Let f be any Boolean function f : GF (2)k → GF (2). Then there is a Boolean function
g 6= 0 of degree at most dk/2e such that: f(x) · g(x) is of degree at most bk/2c.

Proof: If we include in A all the monomials with degrees up to bk/2c, and for B, we
multiply f by all the monomials with degrees up to dk/2e, then we have:

|C| = |A|+ |B| =
bk/2c∑
i=0

dk/2e∑
i=0

(
k

i

)
+

dk/2e∑
i=0

(
k

i

)
=

k∑
i=0

(
k

i

)
+

(
k

bk/2c

)
> 2k

The rank of C = A∪B cannot exceed 2k. Since |C| > 2k, some linear dependencies must
exist. Moreover there are no linear dependencies in the part A of our multi-set C, and
therefore all linear dependencies must combine either only the elements of B, or both A
and B, which in turn means that g 6= 0. This ends the proof. ut
Remark: If fg 6= 0, we obtain an attack following the scenario S3a or S3c, otherwise
when fg = 0 we obtain an attack following the scenario S3b.

Consequences of the Theorem
We see that for any stream cipher with linear feedback, for which the non-linear filter
uses k variables, it is possible to generate at least one equation of degree dk/2e in the n
keystream bits. These equations will be solved, as usual, by linearization. We will need
at most

∑dk/2e
i=0

(n
i

)
≈
( n
dk/2e

)
keystream bits in order to obtain a complete saturated

system solvable by linearization. To summarise, we get the following general attack for
any Boolean function f with k inputs.

d dk/2e
ε 0

Data
( n
dk/2e

)
Memory

( n
dk/2e

)2
Complexity

( n
dk/2e

)ω
The Complexity of the Attack. This attack is polynomial when k is fixed. This
attack will only be exponential in n, if k = O(n). This means that, in order to achieve
exponential security, The number of bits used in a non-linear filter cannot be small.
In practice, talking about polynomial (or not-polynomial) time is misleading and should
always be confronted with concrete results. Knowing that the maximum degree of the
filtering function cannot exceed k, it can be seen that in the scenario S1, any stream
cipher with linear feedback can be broken in about

(n
k

)ω, given
(n
k

)
keystream bits, by

simple linearization. This simple attack is already polynomial when k is fixed, and well
known, see for example [14] or [4]. Here precisely is the problem: many stream ciphers,
some of them unpublished and proprietary, have been designed in such a way that, one
has for example

(n
k

)ω ≈ 280. In practice, since our complexity
( n
dk/2e

)ω is, very roughly
the square root of the previous one, we can break all these ciphers in roughly 240.
Improving the Keystream Requirements. If for a given f , there are several linear
dependencies in C, we will be able to use several linearly independent g, and for each
keystream bit, we will obtain several equations. Then the keystream requirements will
be divided accordingly. For example in Section 5.2 they are divided by 14.
About the Scenario S3c: We were able to show that, either the scenario S3a or S3b
works for the degree dk/2e. For some specific functions, the scenario S3c may be much
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more powerful: if r′ is very small, then we will obtain an attack following the scenario
S3c, in which the degree of g is indeed high, but the degree of fg is very small. For
example if r′ < n2/2, we obtain quadratic equations, and the cipher would be broken in
n2ω given only about m = n2/2 keystream bits.
Worse Case vs Practice. This attack deals with the worst case. For specific functions
the cipher may be much less secure. For example in LILI-128, k = 10 and, with a strict
application of Theorem 6.0.1 we obtain the worst case complexity O(n5ω) for any Boolean
function. However, for the specific function used in LILI-128, our attack from Section
5.2 is in O(n4ω).
Moreover, in many cases it will be sufficient to consider the case when the degrees are
such that we have |C| = |A|+ |B| = 2k. In this case one linear dependency will still exist
with a non-negligible probability.
Another Remark: In Section 5.2 we see that for a random Boolean function (or at least
for most of them), there will be an equation of degree 5, as predicted by the Theorem,
but with fg = 0. This is completely unexpected from the Theorem (because if |A| = 1,
the degree should be in principle much bigger to have |C| > 2k, but is confirmed by
our simulations. This suggests that there might be a better Theorem on the average
behaviour of the Boolean functions.
Resistance Criteria Against This Attack: By inspection we verify that the require-
ment to achieve the best possible resistance against our attack is the following. We need
to make sure that no linear dependencies exist when both multi-sets A and B are gen-
erated up to any degree, strictly smaller than the degree for which dependencies must
exist, due to the theorem. It can be seen that it boils down to assuring that:
Optimal Resistance Criterion: Each time that A and B are generated with degrees
in the xi such that their sum is exactly k−1, and consequently |C| = 2k, all the equations
in C should be linearly independent. It is easy to show that this criterion implies that
the degree of f will be sufficiently large to prevent the attack S1. However, it cannot
guarantee that attacks of type S2 (as in [11]) or S4, will not exist.

7 Consequences for the Design of Stream Ciphers

There are many interesting cases in which the attacks described in this paper will work.
For example, it can be seen that they will work for any regularly clocked stream cipher
with linear feedback and any Boolean function f such that:

1. either f uses a small subset of state bits, (e.g. 10), as in LILI-128, see Section 6,
2. or is very, very sparse, as in Toyocrypt, see [11],
3. or can be factored with a low degree factor, as in Toyocrypt, see Section 3.2.
4. or can be approximated by one of the above (see e.g. our Scenario S4),
5. or its part of high degree is one of the above, for example in Section 5 it has low

degree factors.

We conclude that, in a stream cipher with linear feedback, the filtering function should
use many state bits, for example at least9 32, and should not be too sparse, so it has
also many terms of very high degree (for example at least 32). Moreover the part of high

9 However, a too large number of state bits used in the filter function may conflict with certain design
criteria introduced in [14] to render inversion attacks infeasible.
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degree, should not have a low degree factor, and should itself also use many state bits.
Then, no approximation of the part of high degree (for example obtained by removing
or adding a few very high degree terms) should have a low degree factor, or should use
a small number of state bits. Finally, we see in the example of LILI-128, that specific
functions may behave worse than a random Boolean function of the same size, for no
apparent reason.

What Happened to Stream Ciphers Using Boolean Functions ? In this paper
we show that using LFSRs and so called ”good” Boolean functions is by far insuffi-
cient to construct secure stream ciphers. Regularly clocked filter generators, and the
nonlinear function generators (combinatorial function generators), fail to deliver the se-
curity claimed by some authors [13]. Algebraic attacks open multiple avenues for further
research (see also the generalisations below). Recently, a filter combiner model for memo-
ryless synchronous stream ciphers has been proposed in [23]. This model allows for more
freedom to simultaneously satisfy various design criteria (e.g., correlation attacks and in-
version attacks can be avoided by a suitable choice of parameters). However, this model
still uses a stateless Boolean function to combine outputs of a few linear finite state
machines (e.g., LFSRs or linear cellular automata). Hence our attacks are in principle
also valid for the Boolean functions used in this recent proposal.

New Design Criteria for Boolean Functions. It can be seen that the attacks de-
scribed in the present paper are possible when there exist h, g such that fg + h = 0,
with either h is of low degree, or h = 0 and g is of low degree. In both cases the degree
of fg becomes small. Hence, ideally, to resist algebraic attacks, given the function f , for
every function g of ”reasonable” size the degree of fg should always be lower-bounded
by a sufficiently large degree (for example 10).

This is the new design criterion we propose for Boolean functions used in stream ciphers.

Remarks:

1. It is a bit imprecise. If the degree of fg is always at least 6, and when n = 128, we
will have an attack in about 288. If the degree of fg is always at least 10, and when
n = 128, the complexity of the attacks described in the present paper will exceed
2128. For more detailed recommandations one needs to study the exact complexity of
the attacks we described in this paper including possible variants and improvements.

2. If we require that the degree of fg is at least 10, than from Theorem 6.0.1, it implies
that k should be at least 20. At any rate, 2 · 6 = 12 is a strict minimum. To have
20 inputs is not easy to satisfy in practical stream ciphers and the Boolean function
cannot easily be stored as a table, as in LILI-18 [26]. This gets even much worse if
we look at the improved attack described in Section 7.2. of [12]: from this attack we
get that even k = 50 may not be enough for n = 128 and the security level of 2128.
See [12] for more details.

3. We would say that f is an ”optimal Boolean function w.r.t. the attacks described
in this paper”, if for every function g the degree of fg should be always be at least
min(bk/2c, deg(f) + deg(g)). Indeed, following Theorem 6.0.1, in general we cannot
hope that it will be always bigger than bk/2c.
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7.1 General Algebraic Attacks and New Design Criteria for Stream
Ciphers

More generally, if there are several filtering functions fi in a stream cipher, there should
be no algebraic combination of the fi and of ”reasonable” size, that would have an
unusually low degree. By extension, this criterion also applies to stream ciphers that
have only one filtering function. Indeed a cipher having only one filtering function f , can
be seen as using several functions defined as: f, f ◦ L, f ◦ L2, . . .. It can be seen that, in
all cases, our security criterion can be re-formulated as: there should be no non-trivial
multivariate relations of low degree that relate the key bits and one or many output bits
of the cipher. Otherwise, if only one such multivariate relation exists (for any reason),
an algebraic attack as described in this paper will be possible. We may call this Scenario
S5.
It can be seen that we obtain a design criterion that is basically identical to the notion
of non-trivial equations defined in Section 2 of [8]. It is also very similar to the design
criterion given in [10] for the S-boxes of block ciphers. Finally, it can also be seen as
an interpretation of Shannon’s prescription: In the famous paper from 1949, Claude E.
Shannon states that breaking a good cipher should require ”as much work as solving a
system of simultaneous equations in a large number of unknowns of a complex type”,
see [29].
Extension to Stateful Combiners It is important to see that our generalized attack
scenario S5 applies potentially to all ciphers with linear feedback, even for filters with
memory (and not only to ciphers using stateless Boolean functions), if the number of
possible states is small. For example, we may consider these as a stream cipher with a
stateless combiner chosen at random among a set of Boolean functions. From our general
attack given in Section 6, it can be seen that such equations may still exist simultaneously
for several Boolean functions. However if for example the state is uniformly distributed
and is XORed to the output, this way to obtain equations will not work. This does not
say that there are no equations, and they could still be found by some type of clever
elimination of the state bits. There seems that there is no reason at all that such attacks
should not exist, and in fact they do exist for some real stream ciphers with a stateful
combiner, for example for the Bluetooth keystream generator E0, as shown by Frederik
Armknecht [2, 3].
Probabilistic Version. Our general attack S5 will also have a probabilistic version:
S5 There exists a non-trivial multivariate relation of low degree that relates (only) the

key bits and several output bits of the cipher.
S6 There exists a non-trivial multivariate relation of low degree true with some proba-

bility (1− ε) that relates the key bits and several output bits of the cipher.
Again, ε will have to be very small for such an attack to be practical.

8 Conclusion

In this paper we studied algebraic attacks on stream ciphers with linear feedback (e.g.
using LFSRs), such that the only non-linear component is a filtering function. We reduce
their cryptanalysis to solving a system of algebraic equations, namely an overdefined
system of multivariate binary equations of low degree. We present a method to decrease
the degree of the equations, by multiplying them by well chosen multivariate polynomials.
Thus, we are able to cryptanalyse two well known stream ciphers.
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For Toyocrypt, a Cryptrec submission, our best attack requires only 249 CPU clocks and
some 20 Kbytes of keystream, for a 128-bit cipher. Compared to the best known attack
on Toyocrypt so far by Mihaljevic and Imai [19], our new attack has simultaneously
a much lower complexity, much lower memory, and much looser requirements on the
keystream. We also attacked LILI-128, a Nessie submission, and obtained an attack in
257 CPU clocks for a 128-bit cipher, unfortunately far from being practical (requires 257

keystream bits). This attack can be seen as the best known, if only speed is regarded,
but requires a lot of keystream.
The main contribution of the present paper is the following. If the non-linear function
of a cipher with linear feed-back uses only a small subset of state bits, the cipher will be
insecure, though satisfying all the previously known design criteria. If only k keystream
bits are used out of n, it is widely known that an attack in

(n
k

)ω exists, whatever is the
Boolean function, see [14] or [4]. Thus many stream ciphers, have been designed in such
a way that, one has for example

(n
k

)ω ≈ 280. In practice, since the worst-case complexity
of our attack is

( n
k/2

)ω, roughly the square root of the previous one, we can break these
ciphers in about 240. This attack works for any Boolean function (the worst-case). The
examples of Toyocrypt and LILI-128 show that for specific ciphers, the resistance against
algebraic attacks may be substantially worse: it is not clear how to make sure that some
similar algebraic attacks will not break them.
It has long been known that for stateless Boolean functions used in stream ciphers one
is confronted with design criteria that may conflict each other. Our attacks impose even
stronger restrictions on the choice of such functions. Extrapolating from our general
attack S5, we proposed a very general security criterion for stream ciphers: the non-
existence of multivariate relations of low degree relating the key bits and the output
bits. It turns out to be basically identical to the security criterion defined in Section 2
of [8] for multivariate trapdoor functions, and also to the requirements advocated in [10]
for S-boxes of block ciphers. Moreover, it turns out that this security criterion is also
very important for combiners with memory, see [2, 3, 12].
Important Note: The attacks described in the present paper work given any subset of
keystream bits. In [12] it is shown that if the keystream bits are consecutive, the attack
complexity can be substantially reduced, while using exactly the same initial multivariate
equations.
Acknowledgments: Many thanks to Philip Hawkes, Josef Pieprzyk and the anonymous
referees of Eurocrypt for their helpful comments.
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A Computer Simulations

Algebraic attacks may be controversial, because in most cases, all the equations generated
are not linearly independent. In the algebraic attack on block ciphers proposed in [10], the
number of equations generated is limited, and if there are too many linear dependencies,
the attack will fail. The situation with stream ciphers is very different: for each keystream
bit, we get one equation and thus can obtain as many equations as we want. Then, given
a sufficient quantity of keystream, that in practice turns out to be still quite realistic,
the attack should always work.
Let T be the number of monomials in these equations, and R be the number of equations.
We conjecture that, for all the attacks described in the present paper, the number of linear
dependencies among these equations is negligible. From this we expect the following.

– When R < T most of the equations are linearly independent, and rank ≈ R.
– Then when R ≈ T we have rank ≈ T ,
– Finally when, for example R = 1.01 · T , the rank should be exactly equal to the

number of non-constant monomials, i.e. we should obtain rank = T − 1. Such a
system of full rank can always be solved Gaussian reduction.

All our simulations always confirmed this conjecture.
Example: Simulations on Toyocrypt We programmed our attack on Toyocrypt ex-
actly as described in Section 3.2, except that we replaced the connection polynomial
of the MLFSR that is not published by Cryptrec, by the commonly used irreducible
polynomial X128 + X29 + X27 + X2 + 1,
An attack in 249 is a bit too slow to be experimented on a PC. In order to make the
attack slightly faster, we will fix the values of some of the key bits. Let 0 ≤ na ≤ 128
denote the number of variables that are still unknown. For example if we fix 48 bits to
0, we have na = 128− 40 = 80 and we are still breaking a version of Toyocrypt in which
the initial state has 80 bits. This cipher cannot be broken neither by exhaustive search,
nor by any other attack previously known.
In the following table we computed the rank of the system of equations generated for
the attack on Toyocrypt described in Section 3.2. This is done for different values of na,
and for different choices for R: when R < T , then when R ≈ T , and finally when R
slightly exceeds T . We did simulations up to na = 80, which with our (non-optimized)
implementation, was the maximum that could be done on a PC in one day of CPU time.
We note that the equations are cubic and we have T =

(na

3

)
+
(na

2

)
+
(na

1

)
+
(na

0

)
.

Results: We observe that the number of linear dependencies is becoming negligible
when na → 128, as expected. We also observed that not only the proportion but even
the (absolute, not relative) number of linear dependencies is decreasing when na → 128.
This implies that, for the full Toyocrypt, at most about R = T +10 equations should be
sufficient to obtain a solvable system of a maximum rank = T − 1. Then the complexity
of our attack will be exactly 249.
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na/n T R rank min(R,T−1)
−rank

rank
min(R,T−1)

20/128 1351 0.5 · T 558 117 0.82605

20/128 1351 T 1181 170 0.87417

20/128 1351 1.5 · T 1316 34 0.97409

20/128 1351 2 · T 1350 0 1.00000

40/128 10701 0.5 · T 5316 34 0.99355

40/128 10701 T 10667 33 0.99682

40/128 10701 1.1 · T 10700 0 1.00000

80/128 85401 T 85391 9 0.99988

80/128 85401 T + 50 85400 0 1.00000

80/128 85401 1.01 · T 85400 0 1.00000

Table 4. Algebraic Attack on Toyocrypt - Computer Simulations

B A sequel to the Section 2.6

How to avoid linearly dependent equations. Given a Boolean function f we denote
by S3ad(f) the number of linearly independent polynomials g of degree d, satisfying S3a.
In the same way we define S3bd(f) and S3cd(f).
We see that, by definition, these three scenarios S3a, S3b and S3c exclude each other,
i.e. given f , there is no g that satisfies several scenarios at the same time.
we observe that the scenarios S3b is invariant under a non-zero linear combination
of the possible g functions. The scenarios S3a and S3c are not invariant: some linear
combinations may have lower degree or become 0. Therefore, if we have for example
S3ad(f) = 14 S3bd(f) = 10 and S3cd(f) = 10 this does not mean that we have necessar-
ily 14 ·m + 2 · 10 ·m/2 linearly independent equations. For example for the 10 linearly
independent equations in S3c, some of their linear combinations may be in S3a. How to
solve this problem ?
In general the number of linearly independent equations obtained in our attacks is at
most:

S3ad(f) ·m + S3bd(f) ·m/2 + S3cd(f) ·m/2
In practice it is probably less. An alternative, probably better way to find out the number
of independent equations is to consider the following:
• S3d

0 will be the number of linearly independent equations g of degree ≤ d that are such
that f(s) = 0 ⇒ g(s) = 0.
• S3d

1 will be the number of linearly independent equations g of degree ≤ d that are such
that f(s) = 1 ⇒ g(s) = 0.

Attack scenario

considered

S1 and6 S2

S30 and6 S40

S31 and6 S40

Degree of Use g
f g such that

low 0 g = 1

high low, g 6= 0 f(s) = 0 ⇒ g(s) = 0
high low, g 6= 0 f(s) = 1 ⇒ g(s) = 0

Use the

equation

f(s) = bt

g(s) = 0
g(s) = 0

Only

when

always

bt = 0
bt = 1

Number of equations

for m keystream bits

m

m/2
m/2

Table 5. The alternative classification of ways to obtain low degree equations from keystream bits
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Now we estimate the number of linearly independent equations obtained in our attacks
to be:

S3d
0(f) ·m/2 + S3d

1(f) ·m/2
It is expected that all, or great majority of these equations will be linearly independent.

C A different proof of Theorem 6.0.1

We prove a (very slightly) weaker theorem, by a different method.

Theorem C.0.1 (Low Degree Relations Slightly Weaker Version).
Let f be any Boolean function f : GF (2)k → GF (2). Then there is a Boolean function
g 6= 0 of degree at most dk/2e such that f(x) · g(x) is of degree at most dk/2e.
Proof: We consider a Boolean function f with k inputs. The number of possible inputs
is 2k and if we fix the output to b = 0 or 1, for at least one of these possibilities we have:

∃ b ∈ {0, 1}, s.t. |{x|f(x) = b}| ≤ 1
2
2k

Let Ik
b be this set of inputs. We will create a following matrix: lines are all the possible

elements of Ik
b . The columns are all the monomials of degree up to dk/2e. The number

of columns is: dk/2e∑
i=0

(
k

i

)
>

1
2
2k

Each entry in the matrix is the value ∈ {0, 1} of the column monomial for the entry
corresponding to the current line.
The number of columns is strictly greater than the number of lines, therefore a non-
trivial linear combination of columns must be zero. This combination of columns (i.e.)
monomials of degree ≤ dk/2e, amounts to having a multivariate function g of degree
≤ dk/2e, such that:

∃b ∈ {0, 1}, s.t. ∀x ∈ Ik
b , g(x) = 0.

Therefore:
∃b ∈ {0, 1}, s.t. ∀x, f(x) = b ⇒ g(x) = 0.

By inspection we verify that the following equation is true and that fg satisfies all the
requirements of the Theorem:

∀x ∈ {0, 1}k, f(x) · g(x) = (1 + b) · g(x) ut

Remarks: Apart from the degree that will be sometimes slightly lower (only in very
special cases), we showed here a stronger result than Theorem 6.0.1: the equation not
only satisfies the two degree conditions, but is also very special:

1. It can be written in a very special form:
(f(x) + 1 + b) · g(x) = 0

2. There are solutions such that fg is only of small degree, but it is either 0 or equal to
g. This is surprising and is difficult to expect from our previous proof.
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D Attacks on Toyocrypt and LILI-128 with XL

In this part we will give some additional algebraic attacks on Toyocrypt and LILI-128.
They are motivated by a situation in which the keystream amount available is not suf-
ficient to apply the main linearization attack. In this case one should apply the XL
algorithm, that generalizes the linearization technique.

D.1 Solving Overdefined Systems of Multivariate Equations

In all our attacks, as in [11], after clocking the keystream generator t times, the state
is a known linear combination of the key bits. Hence if we know some m bits of the
keystream, we have m equations with n variables, as follows:

bt1 = f
(
Lt1(k0, . . . , kn−1)

)
...

btm = f
(
Ltm(k0, . . . , kn−1)

)
We recall that f , and all the Lti are public, and only the kj are secret. Then we derive
other equations, of lower degree, as explained in Section 2.6.

A Simple Linearization Attack

It is already known that when f has just a low algebraic degree d, the system can be
easily broken given m =

(n
d

)
keystream bits. This method is called linearization [25]:

Linearization Method: There are about T =
(n
d

)
terms of degree d in the ki, and we

consider each of them as a new variable Vi. Then given R ≥
(n
d

)
keystream bits we get a

system of R ≥
(n
d

)
linear equations with T =

(n
d

)
variables Vi that can be easily solved

by Gaussian elimination.
An example of a successful application of this attack to LILI-128 can be found in [4].

The XL Algorithm

The XL algorithm will work when we do not have as many as
(n
d

)
keystream bits, but

still the system is largely overdefined. It is proposed in [25] and studied in detail in [9,
11] for the cases relevant here (i.e. higher degree multivariate equations over GF (2)).
We recall quickly how it works over GF (2). Given a system of m equations with n
unknowns over GF (2). For each D we consider all the multiples of the given equations
by a monomial, that are of the total degree D. Let R be the number of such equations
that are generated, we have R ≈ m ·

( n
D−d

)
. Let T ≈

(n
D

)
the total number of terms in

these equations. For each D we take the smallest m for which R/T > 1.1. Then the we
add a new variable for each of T monomials and solve the resulting linear system. It is not
obvious if this always works, as the equations may not always be linearly independent,
however the detailed analysis given in [11] and the computer simulations shows that
when R/T > 1.1, we expect the XL attack to work exactly as predicted, at least for
random systems of equations.
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Do We Need XL ?

In this paper, we add an important preliminary step (see methods S3 and S4 defined
above), in which from the initial equations, we generate other equations of substantially
lower degree. In the scenario S3, equations are true with probability 1, and thus we
may obtain as many such equations as required, given enough keystream bits. Then for
XL, we will have a largely overdefined system, and it turns out the best way to solve
such a system by XL is to put D = d in XL. In this case XL boils down to the simple
linearization method as described in the main paper.

Only when, for some reasons the amount of the keystream is restricted, it makes sense to
use XL. The idea is that, When the number of equations obtained from the keystream
is insufficient for linearization, we still get a very overdefined system of equations. Below
we give some examples of application of XL to Toyocrypt and LILI-128.

D.2 Application of XL to Toyocrypt

In practice, in order to apply XL to our system of equations (the same system that
in the main paper, except that it has less equations), we proceed as follows. For each
D = d, d+1, . . . we consider all the multiples of the given equations by a monomial, that
are of the total degree D. Then for each D we take the smallest m for which R/T > 1.1
and from [11] we know that in this case the XL attack always works exactly as described.
Thus, for Toyocrypt, we get the following results:

d

ε

D

Data

Memory

Complexity

3 3 3 3 3 3

0 0 0 0 0 0

3 4 5 6 7 8

1.5 · 217 215 214 213 212 211

237 247 256 265 273 281

249 262 276 288 299 2110

Table 6. Our attack on Toyocrypt extended by XL, possible trade-offs

D.3 Application of XL to LILI-128

Here, as explained in Section 4.1, we have two versions A and B. In the first version (A)
the state of the first generator is guessed and the complexity is multiplied by 239, In the
second version (B), the first component is clocked 239 − 1 clocks at a time and it is the
number of keystream bits that is multiplied by 239. The attacks of type B requires a lot
of keystream, but it can be seen that we only need s very small subset of it, namely only
bits that are on some positions of the form α+β · (239− 1), for a fixed α. Once the state
at the time α of the second LFSR is recovered, the state of the first LFSR can be found
very quickly within 239 tries and a few additional keystream bits.
Intermediate variants between A and B are also possible, see Section 4.1.
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Here are the results that can be obtained with XL:
Version

d

ε

D

Data

Memory

Complexity

A A A

4 4 4

0 0 0

4 5 6

218 215 214

243 251 258

296 2107 2118

B B B

4 4 4

0 0 0

4 5 6

257 254 253

243 251 258

257 268 279

Table 7. Our attack on LILI-128 extended by XL, possible trade-offs

Remark: Again, for both Toyocrypt and LILI-128, our fastest attack happens to be
when D = d and in this case XL boils down to the simple linearization as described in
Section 2.7: we just consider each monomial as a variable and solve a system of linear
equations. This attack however requires the biggest amount of the keystream. We observe
also that the complexity of the attacks increases substantially for a moderate decrease
in the amount of keystream.


